Search results for "Pump probe"

showing 5 items of 5 documents

Disentangling size effects and spectral inhomogeneity in carbon nanodots by ultrafast dynamical hole-burning.

2018

Carbon nanodots (CDs) are a novel family of nanomaterials exhibiting unique optical properties. In particular, their bright and tunable fluorescence redefines the paradigm of carbon as a "black" material and is considered very appealing for many applications. While the field keeps growing, understanding CDs fundamental properties and relating them to their variable structures becomes more and more critical. Two crucial problems concern the effect of size on the electronic structure of CDs, and to what extent their optical properties are influenced by structural disorder. Furthermore, it remains largely unclear whether traditional concepts borrowed from the photo-physics of semiconductor qua…

Potential wellMaterials scienceField (physics)530 Physicschemistry.chemical_element02 engineering and technologyElectronic structure010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect620 Engineeringcarbon nanodots fluorescent nanomaterials pump probe carbon materials01 natural sciences0104 chemical sciencesNanomaterialsCondensed Matter::Materials SciencechemistryChemical physicsAtomic electron transitionFemtosecond540 ChemistryGeneral Materials Science0210 nano-technologyCarbonUltrashort pulseNanoscale
researchProduct

Simulating pump-probe photo-electron and absorption spectroscopy on the attosecond time-scale with time-dependent density-functional theory

2013

Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experimen…

Time-resolved spectroscopyTime FactorsAbsorption spectroscopyAtomic Physics (physics.atom-ph)AttosecondAttosecond dynamicsFOS: Physical sciencesPump probesingle-molecule studies01 natural sciencestime-resolved spectroscopySettore FIS/03 - Fisica Della MateriaPhysics - Atomic PhysicsAb initio quantum chemistry methodsPhysics - Chemical Physics0103 physical sciencesPhysics - Atomic and Molecular ClustersLaser spectroscopyPhysical and Theoretical Chemistry010306 general physicsSpectroscopyPhysicsChemical Physics (physics.chem-ph)010304 chemical physicsEuropean researchab initio calculationsPhotoelectron SpectroscopySingle-molecule studiesattosecond dynamicsTime-dependent density functional theoryAtomic and Molecular Physics and OpticsPhysics - Plasma PhysicsPlasma Physics (physics.plasm-ph)X-Ray Absorption Spectroscopylaser spectroscopyQuantum TheoryAtomic physicsTime-resolved spectroscopyAtomic and Molecular Clusters (physics.atm-clus)
researchProduct

Modelling the effect of nuclear motion on the attosecond time-resolved photoelectron spectra of ethylene

2014

arXiv:1403.5408

attosecond pump probeAttosecondFOS: Physical sciencesElectronmedicine.disease_cause01 natural sciencesSpectral lineSettore FIS/03 - Fisica Della Materianuclear motionTDDFTPhysics - Chemical Physics0103 physical sciencesmedicinePhysics::Atomic and Molecular ClustersMoleculePhysics - Atomic and Molecular ClustersPhysics::Chemical Physics010306 general physicsPhysicsChemical Physics (physics.chem-ph)010304 chemical physicsTRPESTime-dependent density functional theoryCondensed Matter PhysicsAtomic and Molecular Physics and Optics3. Good healthExtreme ultravioletFemtosecondAtomic physicsAtomic and Molecular Clusters (physics.atm-clus)Ultraviolet
researchProduct

Emergent ultrafast phenomena in correlated oxides and heterostructures

2017

The possibility of investigating the dynamics of solids on timescales faster than the thermalization of the internal degrees of freedom has disclosed novel non-equilibrium phenomena that have no counterpart at equilibrium. Transition metal oxides (TMOs) provide an interesting playground in which the correlations among the charges in the metal $d$-orbitals give rise to a wealth of intriguing electronic and thermodynamic properties involving the spin, charge, lattice and orbital orders. Furthermore, the physical properties of TMOs can be engineered at the atomic level, thus providing the platform to investigate the transport phenomena on timescales of the order of the intrinsic decoherence ti…

coherent transportFOS: Physical sciences02 engineering and technologySettore FIS/03 - FISICA DELLA MATERIA01 natural sciencesCondensed Matter - Strongly Correlated ElectronsPhysics and Astronomy (all)electronic coherenceTransition metalAtomic and Molecular PhysicsLattice (order)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)coherent transport; electronic coherence; heterostructures; photon harvesting; pump probe; transition metal oxides; ultrafast dynamics; Atomic and Molecular Physics and Optics; Mathematical Physics; Condensed Matter Physics; Physics and Astronomy (all)transition metal oxides010306 general physicsAnisotropyQuantumMathematical PhysicsPhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Mott insulatorMaterials Science (cond-mat.mtrl-sci)Heterojunction021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and Opticsultrafast dynamicsThermalisationheterostructuresChemical physicsphoton harvestingpump probeand Optics0210 nano-technologyTransport phenomenacoherent transport; electronic coherence; heterostructures; photon harvesting; pump probe; transition metal oxides; ultrafast dynamics;
researchProduct

Ultrafast Interface Charge Separation in Carbon Nanodot-Nanotube Hybrids

2021

Carbon dots are an emerging family of zero-dimensional nanocarbons behaving as tunable light harvesters and photoactivated charge donors. Coupling them to carbon nanotubes, which are well-known electron acceptors with excellent charge transport capabilities, is very promising for several applications. Here, we first devised a route to achieve the stable electrostatic binding of carbon dots to multi- or single-walled carbon nanotubes, as confirmed by several experimental observations. The photoluminescence of carbon dots is strongly quenched when they contact either semiconductive or conductive nanotubes, indicating a strong electronic coupling to both. Theoretical simulations predict a favo…

pump probe spectroscopyNanotubeMaterials scienceCarbon nanotubeschemistry.chemical_elementCarbon nanotubeCarbon nanodotsPhotoinduced electron transferlaw.inventionCondensed Matter::Materials ScienceElectron transferlawUltrafast laser spectroscopyGeneral Materials Sciencecarbon nanodotsNATURAL sciences & mathematicsCarbon nanohybridschemistry.chemical_classificationcarbon nanotubesbusiness.industryElectron acceptorCondensed Matter::Mesoscopic Systems and Quantum Hall EffectPump probe spectroscopyUltrafast electron transferultrafast electron transferchemistrycarbon nanohybridsOptoelectronicsddc:500NanodotbusinessCarbonResearch Article
researchProduct